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Abstract

A key property of relational representations is their generativity: From partial descriptions of

relations between entities, additional inferences can be drawn about other entities. A major theo-

retical challenge is to demonstrate how the capacity to make generative inferences could arise as

a result of learning relations from non-relational inputs. In the present paper, we show that a bot-

tom-up model of relation learning, initially developed to discriminate between positive and nega-

tive examples of comparative relations (e.g., deciding whether a sheep is larger than a rabbit), can

be extended to make generative inferences. The model is able to make quasi-deductive transitive

inferences (e.g., “If A is larger than B and B is larger than C, then A is larger than C”) and to

qualitatively account for human responses to generative questions such as “What is an animal that

is smaller than a dog?” These results provide evidence that relational models based on bottom-up

learning mechanisms are capable of supporting generative inferences.

Keywords: Relation learning; Transitive inference; Deduction; Induction; Hypothetical reasoning;

Bayesian models

1. Introduction

1.1. Generating inferences based on relations

A hallmark of human intelligence is the ability to learn and make inferences based on

relations between entities, rather than solely on features of individual entities (for reviews
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see Gentner & Forbus, 2011; Halford, Wilson, & Phillips, 2010; Holyoak, 2012). The

ability to reason with relations increases over the course of cognitive development (e.g.,

Gentner & Rattermann, 1991; Halford, 1992), but it is already firmly established in pre-

school children (e.g., Gentner, 1977; Glass, Holyoak, & Kossan, 1977; Holyoak, Junn, &

Billman, 1984). Core competences associated with higher level human cognition, includ-

ing both inductive reasoning (e.g., analogy) and deductive reasoning (e.g., transitive infer-

ence), depend on the ability to acquire and manipulate relational representations.

Relational reasoning has several interrelated properties. Relations are compositional
(Halford et al., 2010), in that constituent entities from which relations are constructed

retain their identities and can be accessed within the relational structure. This property

underlies the generativity of relations: A partial description of relations between objects

can be extended to answer questions about relations between actual or hypothetical

objects. For example, comparative relations such as larger exhibit the logical properties

of transitivity and asymmetry, supporting deductions such as “If A is larger than B and B
is larger than C, then A is larger than C,” for arbitrary instantiations of the objects A, B,
and C. Children as young as 5 or 6 years can make such transitive inferences reliably

(Goswami, 1995; Halford, 1984; Kotovsky & Gentner, 1996).

The ability to make generative inferences based on relational knowledge thus appears

to be a key aspect of human intelligence (Penn, Holyoak, & Povinelli, 2008), which

needs to be accounted for by any model of relational reasoning that aspires to generality.

The basic goal of the present paper is to describe a computational model of relational

processing that addresses this requirement.

1.2. How can relations be learned?

The first step toward explaining how relations can be used to make generative infer-

ences is to provide an account of how relations can be acquired in the first place. Doubt-

less, some relations are constructed in a top-down fashion, but there is strong evidence

that some relations acquired early by children are learned through bottom-up processes

(Mandler, 1992). For example, children seem to acquire comparative relations such as

larger than in stages, first learning features of individual objects, then extracting specific

attributes of individual objects (e.g., a size value), and eventually linking attributes of

paired objects to form a binary relation (Smith, 1989). Thus, a basic problem for cogni-

tive science is: How can relations be acquired from non-relational inputs?
A few models based on neural-network architectures (Doumas, Hummel, & Sandhofer,

2008; Smith, Gasser, & Sandhofer, 1997) have had some success in modeling bottom-up

relation learning. However, it is difficult to fully evaluate the adequacy of proposed

models of relation learning without first controlling the nature of the elementary inputs

on which learning is based. For example, a well-known limitation of models of analogy

(for which relational knowledge is central) is that modelers typically create their own

“toy” input representations, which may be inadvertently tailored so as to reduce task diffi-

culty (Chalmers, French, & Hofstadter, 1992). In modeling basic relation learning, it is

critical to ensure that the non-relational inputs on which learning operates are
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autonomously created (rather than hand-coded by the modeler) and are of realistic com-

plexity. When a model of relation learning is forced to operate on realistic inputs, theoret-

ical issues that might have gone unnoticed with simpler inputs are more likely to be

brought to the fore.

We recently developed a discriminative Bayesian model termed Bayesian Analogy with
Relational Transformations (BART) that can learn simple relations in a bottom-up fashion

(Lu, Chen, & Holyoak, 2012). The inputs to BART are non-relational feature vectors

derived independently of the model. A number of alternative feature representations have

been used as inputs to BART, of which the richest and most complex feature representa-

tions were derived by applying the topic model (Griffiths, Steyvers, & Tenenbaum, 2007)

to the English Wikipedia corpus. The output of the topic model is used to create real-valued

feature vectors for individual objects. The BART model represents an n-ary relation as a

function that takes a feature vector for an ordered set of n objects as its input and outputs

the probability that these objects instantiate the relation. The model learns a representation

of the relation from labeled examples (typically positive examples only), and then applies

the learned representation to determine whether the relation holds for novel examples.

As the initial domain to investigate relation learning, Lu et al. (2012) examined learn-

ing of first-order comparative relations between animal concepts (e.g., a cow is larger

than a sheep). Given feature vectors representing pairs of animals that exemplify a rela-

tion, BART acquires representations of comparative relations (e.g., larger, smarter) as

weight distributions over the features. A key idea is that relation learning can be facili-

tated by incorporating empirical priors, which are derived using some simpler learning

task that can serve as a precursor to the relation learning task (Silva, Heller, & Ghahra-

mani, 2007). Just as children learn attributes of individual objects (e.g., large, smart)
prior to binary relations (Smith, 1989), BART first learns representations of one-place

categorical predicates (e.g., large animals, smart animals), which then serve as empirical

priors to “jump-start” the acquisition of binary relations. For details on the operation of

the model, see Lu et al. (2012).

BART’s learned relations support generalization to new animal pairs. After receiving

100 training pairs represented using topic feature vectors, the model discriminated

between novel pairs that instantiate a relation (e.g., larger, smarter) and those that do not

with about 70%–80% accuracy. The model yields the classic symbolic distance effect

(Moyer & Bayer, 1976), in which discrimination accuracy increases monotonically with

the magnitude difference between items in a pair. Moreover, BART’s learned weight dis-

tributions can be systematically transformed to evaluate analogies based on higher order

relations between the learned first-order relations (e.g., larger:smaller:: fiercer:meeker).
A simpler version of the model can predict magnitude values on specific dimensions

based on human ratings for individual objects (Chen, Lu, & Holyoak, 2014).

1.3. The problem of generative inferences

Although the BART model shows some promise as a bottom-up model of relation

learning, it nonetheless has many limitations. Perhaps most notably, it was developed as
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a discriminative model, and thus can only perform tasks that involve evaluation of a rela-

tion (e.g., deciding whether the pair sheep-fox instantiates the relation larger) or evalua-
tion of an analogy (e.g., deciding whether larger:smaller:: fiercer:meeker or larger:
smaller:: fiercer:slower is the better choice to form a valid 4-term analogy). Unlike gen-

erative Bayesian models (e.g., Tenenbaum, Kemp, Griffiths, & Goodman, 2011), which

naturally operate in a top-down manner to “fill in” incomplete representations, BART is

unable to make inferences that require generation of new information that would com-

plete a relation. For example, the model is unable to generate analogical completions

(e.g., producing meeker to complete larger:smaller:: fiercer:?). The model is even unable

to generate an answer to a simple factual question like “What is an animal larger than a

fox?” Given the centrality of generative inferences in human cognition, as discussed

above, the lack of such capacity is a severe limitation. Any model that aspires to account

for human reasoning in a general way must specify mechanisms by which relations can

be used to generate answers to inferential questions.

Several lines of work in artificial intelligence and cognitive science have examined the

generation of exemplars and categories based on individual objects (for a recent review

see Jern & Kemp, 2013). For example, Hinton and Salakhutdinov (2006) developed a

multilayer neural-network model to reconstruct complex high-dimensional input, such as

hand-written digits and grayscale patches in face images. Ward (1994) asked people to

invent and draw imaginary animals from a different planet and observed that the novel

constructions tended to be similar to familiar animals on Earth. Jern and Kemp (2013)

had people study exemplars of an artificial category and then draw exemplars of the cate-

gory. Their human data were broadly consistent with a model that learned the distribution

of exemplars (represented by objects parts) for the category, and then generated exem-

plars by sampling from its learned distribution. In the area of category learning, there is

evidence that instructions can guide learners to either focus on discrimination between

exemplars of different categories, or on learning broader distributional properties of cate-

gories, with the latter learning style supporting a wider range of inferences (Hsu &

Griffiths, 2010; Levering & Kurtz, 2015).

However, virtually all previous work relating learning to generative inferences has

focused on categories and exemplars based on individual objects, rather than on tasks

requiring generation of examples of instantiated relations between entities (the focus of

the present paper). Although object concepts such as dog can be plausibly represented by

distributions over features of objects (Fried & Holyoak, 1984), relation concepts such as

larger are not directly definable in terms of features of individual objects (Doumas &

Hummel, 2012). It therefore seems that generative inferences based on relations may

involve different mechanisms than generative inferences based on object categories. There

is ample evidence that people are in fact capable of making generative inferences in

many relational tasks. For example, analogical inference involves generating inferences

about a novel target situation by transferring knowledge from a more familiar source

(e.g., Gick & Holyoak, 1980, 1983; Green, Fugelsang, Kraemer, Gray, & Dunbar, 2012).

A number of computational models of inference generation by analogy have been pro-

posed (e.g., Falkenhainer, Forbus, & Gentner, 1989; Halford, Wilson, & Phillips, 1998;
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Holyoak, 2012; Hummel & Holyoak, 2003); however, with the important exception of

Discovery of Relations by Analogy (DORA; Doumas et al., 2008), models of how ana-

logical inferences can be generated have not directly addressed the issue of how relations

are acquired in the first place. Notably, the DORA model (when applied in conjunction

with Learning and Inference with Schemas and Analogies [LISA]; Hummel & Holyoak,

1997, 2003) is able to make generative relational inferences based on its acquired rela-

tions (Doumas, Morrison, & Richland, 2009).

This paper presents a model that begins to address the problem of making generative

inferences based on relations that have been learned in a bottom-up manner from non-

relational inputs. We term the model BART-g (where “g” stands for “generative”), as it is

an extension of the original BART model. Nonetheless, the new model is not strictly tied

to BART, as its basic mechanism for making generative inferences could operate using

outputs from any model that can take an ordered pair of objects and assign a probability

that a specified relation holds for the pair. BART-g (like the DORA model; Doumas

et al., 2008, 2009) thus provides an existence proof that a bottom-up model of relation

learning has the potential to use its acquired representations to make basic generative

inferences.

The rest of the paper is organized as follows: We first describe BART-g and the inde-

pendently generated inputs that we use for relation learning. We then report simulations

of the generative inferences required for two tasks: (a) transitive inference based on hypo-

thetical objects; and (b) relation completion. The former task is one that is known to be

within the capacity of preschool children. For relation completion, the performance of

BART-g is compared to human data collected from adults performing the same task.

Finally, we discuss both the promise and the limitations of the general approach to rela-

tion learning and generative inferences exemplified by BART-g.

2. Generative inferences in the BART-g model

2.1. Domain and inputs

We focus on the same domain used in the initial BART project (Lu et al., 2012): com-

parative relations between animal concepts. We also use the same basic inputs employed

in previous work. To establish the “ground truth” of whether various pairs of animals

instantiate different comparative relations, we used a set of human ratings of animals on

four different continua (size, speed, fierceness, and intelligence; Holyoak & Mah, 1981).

These ratings made it possible to test the model on learning eight different comparative

relations: larger, smaller, faster, slower, fiercer, meeker, smarter, and dumber. Each ani-

mal concept is represented by a real-valued feature vector. In order to avoid the perils of

hand-coded inputs (i.e., the possibility that the model’s successes may be partly attributa-

ble to hidden representational assumptions made by the modelers), we use two sets of

independently generated representations of objects as inputs, which we term “Leuven vec-

tors” and “topic vectors,” respectively.
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2.1.1. Leuven vectors
We derived Leuven vectors from norms of the frequencies with which participants

at the University of Leuven generated features characterizing 129 different animals

(De Deyne et al., 2008; see Shafto, Kemp, Mansinghka, & Tenenbaum, 2011). Each

animal in the norms is associated with a set of frequencies across more than 750 fea-

tures. We created vectors of length 50 based on the 50 features most highly associated

with the subset of 44 animals that are also in the ratings dataset (Lu et al., 2012).

Fig. 1 provides a visualization (for 30 example animals and the first 15 of the 50

features) of these high-dimensional and distributed representations, which might reflect

the semantic representations underlying people’s everyday knowledge of various

animals.

2.1.2. Topic vectors
We created topic vectors by running the topic model (Griffiths et al., 2007) on a

pre-processed version of the English Wikipedia corpus, which contained 174,792

entries and 116,128 unique words. We generated three Markov chains using the same

corpus. The first sample in each chain was taken after 1,000 iterations, and sampling

was repeated once every 100 iterations until eight samples were produced. Each sample

yielded a matrix in which the (i, j)th entry is the number of times that word i has

been assigned to topic j. From this matrix, we derived a vector for each word based

on the conditional probability of each topic given that word. We averaged the word

vectors created from different samples within a single Markov chain because they con-

tained very similar topics (determined by examining the most probable words for each

appears in fairy tales and stories
can be bred
can fly
can have different colors
can swim
can't fly
cartoon figure
eats fish
eats grass
eats insects
eats plants
exists in different sizes and kinds
has a bill
has a tail
has feathers
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Fig. 1. Illustration of Leuven vectors for some example animals (De Deyne et al., 2008), reduced to 15 fea-

tures to conserve space. The cell intensities represent feature values derived from response frequencies in a

feature generation task (dark indicates high values and light indicates low values).
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topic). However, samples from different Markov chains contained different topics, so

they could be not be averaged. We merged the word representations created from the

three Markov chains in the following way: First, for each chain, we selected the 30

features that had the highest values summed across the animals in the Holyoak and

Mah (1981) norms. We then ran BART’s relation-learning module using each chain’s

set of 30 features separately and ranked the chains in terms of the model’s generaliza-

tion performance (which did not differ very much across the different chains). We

added all 30 features from the chain that resulted in the best performance to the final

set of features. We then added features from the second-best chain that did not have

very high correlations with any of the 30 features chosen so far (specifically, all corre-

lations had to be < 0.8), which resulted in an additional 12 features. Finally, we added

features from the last chain that did not have very high correlations with any of the

42 features chosen from the first two chains, resulting in a total of 52 features. Fig. 2

illustrates these topic vectors for the same 30 animals as in Fig. 1 using the first 15 of

the 52 topic features, and Table 1 contains the top 10 words associated with each of

these 15 topics.

2.2. Acquisition of relational representations in BART

BART-g is based on relations learned by the original BART model. BART represents

a relation using a joint distribution of weights, w, over object features. A relation is

learned by estimating the posterior probability distribution P(w|XS, RS), where XS repre-

sents the feature vectors for object pairs in the training set, the subscript S indicates
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Fig. 2. Illustration of topic vectors (Griffiths et al., 2007), reduced to 15 features to conserve space, for the

same example animals as in Fig. 1. The cell intensities represent feature values (dark indicates high values

and light indicates low values). See Table 1 for the top 10 words associated with each topic.
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the set of training examples, and RS is a set of binary indicators, each of which (denoted

by R) indicates whether a particular pair of objects instantiates the relation or not. The

distribution of the vector w constitutes the relational representation, the mean of which

can be interpreted as weights reflecting the influence of the corresponding feature dimen-

sions in X on judging whether the relation applies.

The weight distribution can be updated based on examples of ordered pairs that instan-

tiate the relation in the training set. Formally, the posterior distribution of weights can be

computed by applying Bayes’ rule:

P wjXS;RSð Þ ¼ P RSjw;XSð ÞP wð ÞR
w P RSjw;XSð ÞP wð Þ ; ð1Þ

where the likelihood term is defined using a logistic function:

P R ¼ 1jw; xð Þ ¼ 1

1þ e�wTx
: ð2Þ

The prior distribution of weights is a multivariate normal distribution. As in Lu

et al. (2012), an empirical prior was used for the means of the prior weight distribu-

tion. Specifically, we trained BART on the eight categories of one-place predicates

(e.g., large, small, fierce, meek) that can be formed with the extreme animals at each

end of the four magnitude continua (size, speed, fierceness, and intelligence). For

example, we used the 20 largest animals (e.g., whale, dinosaur, elephant) to learn the

category of large animals and the 20 smallest animals (e.g., flea, fly, worm) to learn

the category of small animals. When the model is then presented with ordered pairs,

Table 1

Top 10 words associated with example topics created using the Wikipedia corpus

Topic Top 10 Words

1 Horse animals animal dog horses dogs wolf breed wild hunting

2 Found snake teeth years fossil large specimens genus modern largest

3 Species eggs found food body prey feeding egg feed insects

4 Island sea fish marine fishing islands coast water beach coastal

5 Forest species plant plants trees tree forests native areas habitat

6 Room back car door night find inside man front house

7 Character appears characters shown main named voiced revealed appearance series

8 Food made meat served called popular milk cooking cuisine dish

9 Disney animated Warner Walt cartoon voice animation featured television film

10 Species birds worldwide occur small bird family large long short

11 Oregon expedition North map Arctic Pacific Portland cook South ice

12 Cross mark flag arms symbol sign coat national official red

13 Human genetic evolution natural evolutionary humans biological selection life Darwin

14 Power battle form attack powerful ability fight sword fighting defeat

15 England runs match cricket Australia wickets made innings series scored
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BART automatically forms an empirical prior for the first role of the two-place rela-

tion by identifying the one-place predicate that best distinguishes the objects in the

two relational roles (i.e., the category of which the first object is maximally more

likely than the second to be a member). The potential priors on the second role are

linked to those for the first role, by reversing the sign on the weights for the first role

to form a contrast. The reliability of prior selection will naturally vary with the

number of training examples, yielding an inherent source of variability in the acquisi-

tion of the relations. In an alternative “baseline” version of the model, the empiri-

cal prior on weights is replaced by an uninformative prior (standard normal

distributions).

After learning the joint weight distribution that represents a relation, BART discrimi-

nates between pairs that instantiate the relation and those that do not by calculating the

probability that a target pair xT instantiates the relation R:

PðRT ¼ 1jxT ;XS;RSÞ ¼
Z
w

PðRT ¼ 1jxT ;wÞPðwjXS;RSÞ: ð3Þ

2.3. Generative inferences in BART-g

The goal of the present paper is to endow BART with the ability to make generative

inferences, so that the extended model BART-g can, for example, complete a partially

instantiated relation, answering questions such as “What is an animal that is smaller than a

dog?”1 We use the weight representation for a relation learned by BART to complete gen-

erative tasks. When presented with a cue relation (e.g., smaller) and a cue object (e.g.,

dog), the model produces possible responses for the remaining object (e.g., cat) so that the

ordered object pair satisfies the relation. More specifically, given the features of a cue

object B, xB, and the knowledge that relation R holds for the object pair (A, B), BART-g
generates a probabilistic description for the feature vector of object A, xA, by making the

following inference:

P xAjxB;R ¼ 1ð Þ / P R ¼ 1jxA; xBð ÞP xAjxBð Þ: ð4Þ

This generative inference reflects a compromise between (1) maximizing the semantic

similarity between A and B, which is reflected in the prior term, P xAjxBð Þ; and (2) maxi-

mizing the probability that the relation holds between the two objects, which is reflected

in the likelihood term, P R ¼ 1jxA; xBð Þ.
The term P R ¼ 1jxA; xBð Þ is the probability that relation R holds for a particular

hypothesized object A, xA, and the known object B, xB. It is defined using a logistic func-

tion (consistent with the likelihood function used in BART, Eq. (2)):

P R ¼ 1jxA; xBð Þ ¼ 1

1þ e�wT
1
xA�wT

2
xB
: ð5Þ
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Relative to Eq. (2), we have only introduced small differences in the notation. The

learned relational weights, w, are written as two separate halves: weights associated with

the first relational role (w1) and weights associated with the second relational role (w2).

Correspondingly, the feature vector 3 for a pair of objects is separated into the feature

vector for object A (xA) and the feature vector for object B (xB).
The prior for the features of object A, P xAjxBð Þ; is the conditional probability distribu-

tion given the features of object B, defined as the following:

P xAjxBð Þ ¼ N xB;r
2I

� �
: ð6Þ

We assume that object B (the cue object) serves a starting point for generating object

A, so the means of P xAjxBð Þ are taken to be the feature values of object B, reflecting a

certain degree of semantic dependency between the two objects. The prior also encodes

the assumptions that the features of A are uncorrelated and have the same variance r2,

the value of which is a free parameter that determines the strength of the model’s bias

for generating A objects that are similar to B.
To compute the inference in Eq. (3), we adapted the variational method (Jaakkola &

Jordan, 2000) using the following updating rules for the mean l and covariance matrix V
of the feature distribution, as well as the variational parameter ξ:

V�1 ¼ I
r2 þ 2k nð Þw1w

T
1 ;

l ¼ V I
r2 xB þ w1

2
� 2kk nð Þw1

� �
n2 ¼ wT

1 Vþ llTð Þw1;

; ð7Þ

where k nð Þ ¼ tanh
1
2
nþkð Þ

� �
4 nþkð Þ and k ¼ wT

2 xB: The variational method is much more efficient

than alternative sampling methods for making inferences based on high-dimensional

representations.

Figs. 3 and 4 illustrate the operation of the model in generating an animal (object A)
that is larger than a sheep (Fig. 3) or an elephant (Fig. 4), where the latter fill the role of

object B. The feature distribution for A is updated from a prior, P xAjxBð Þ; favoring some

degree of similarity between the two animals (left panel; top: high similarity, bottom: low

similarity) to a posterior distribution, P xAjxB;R ¼ 1ð Þ; after taking into consideration the

relation (i.e., larger) instantiated by the animal pairs (right panel). These distributions are

shown in a simplified two-dimensional feature space (size and speed ratings for animals;

Holyoak & Mah, 1981). In a later section, we apply the model to more complex and

distributed feature representations.

3. Transitive inference based on hypothetical instances

The first test of BART-g evaluated whether the model enables transitive inferences on

comparative relations. Comparative relations such as larger exhibit the logical properties
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of transitivity and asymmetry, supporting deductions such as “If A is larger than B and B
is larger than C, then A is larger than C.” Such hypothetical reasoning seems to depend

on the ability to generate arbitrary instantiations of the relation without any guidance

from object features (as the object representations are semantically empty). Note that the

ability to make “one-shot” transitive inferences based on hypothetical instances is entirely

distinct from the ability to learn an ordered series from repeated exposure to specific

pairs. The latter phenomenon, termed “transitivity of choice,” is within the capacity of

many species (Merritt & Terrace, 2011). In contrast, one-shot transitive inference based

on arbitrary instantiations has not been shown convincingly in any species other than

humans (Halford, 1984). Human children reliably succeed on this task by about age 5 or

6 (Goswami, 1995; Halford, 1984; Kotovsky & Gentner, 1996).

3.1. Transitive inference in BART-g

The basic approach to transitive inference in BART-g is straightforward: The model

“imagines” objects A, B, and C that instantiate the two given premises, as in the example
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Fig. 3. Illustration of the model results for inferring an animal that is larger than a cued animal (sheep), in a

simplified two-dimensional space (size and speed ratings for animals; Holyoak & Mah, 1981). Colors reflect

probability densities (yellow indicates high values and blue indicates low values). The top panels show the

prior and posterior distributions with r2 = 7 (favoring similarity-based completions such as cow), and the

bottom panels show the prior and posterior with r2 = 25 (favoring landmark-based completions such as

elephant). The locations of various animals in this two-dimensional space are labeled. The posterior distribu-

tion of inferred animals was generated using the relational weights that BART learned based on the four-

dimensional feature vectors derived from the full set of human magnitude ratings. The feature space was

reduced to two dimensions for the purpose of illustration.
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above, and then tests the unstated relationship for the pair <A, C>. The model “imagines”

an object by employing its generative inference computation, as described in the previous

section. Specifically, for each of the eight comparative relations that BART learned, we

first let BART-g imagine an animal B (because the statement “A is larger than B” implies

that B is the referent against which A is being compared) by randomly sampling a feature

vector from a distribution representing the animal category. This is an empirical Gaussian

distribution with a mean vector and covariance matrix that were directly estimated from

the feature vectors of the animals in the ratings dataset that had Leuven or topic vectors,

respectively. There were 44 such animals for the Leuven inputs and 77 such animals for

the topic inputs.

Given the sampled animal B, BART-g constructs a distribution for animal A (e.g., to

satisfy the premise that “A is larger than B”) by letting B fill the second role of the rele-

vant relation. Similarly, the model constructs a distribution for animal C (e.g., to satisfy

the premise that “B is larger than C”) by letting B fill the first role of the same relation.

Next, the model creates feature representations for specific animals A and C by setting

their feature vectors, xA and xC, to be the means of the inferred feature distributions for

A and C, respectively. Note that these “imagined” animals are hypothetical: Although

their features are sampled from the distribution of animal features, the results will seldom

correspond to actual animals. To ensure that the premises have actually been satisfied,

the model accepts the imagined animal A only if PðR ¼ 1jxA; xBÞ[ 0:5 and

Size

S
p

ee
d dog

elephantsheep

horse

cow

whale

2 3 4 5 6 7 8 9 10 11 12
0
1
2
3
4
5
6
7
8
9

10

Size

S
p

ee
d dog

elephantsheep

horse

cow

whale

2 3 4 5 6 7 8 9 10 11 12
0
1
2
3
4
5
6
7
8
9

10

Size

S
p

ee
d dog

elephantsheep

horse

cow

whale

2 3 4 5 6 7 8 9 10 11 12
0
1
2
3
4
5
6
7
8
9

10

Size

S
p

ee
d dog

elephantsheep

horse

cow

whale

2 3 4 5 6 7 8 9 10 11 12
0
1
2
3
4
5
6
7
8
9

10

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

PosteriorPrior

Fig. 4. Illustration of the model results for inferring an animal that is larger than an elephant in a simplified

two-dimensional space. r2 is set to the same values as in Fig. 3 (seven for the top panels and 25 for the

bottom panels).
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PðR ¼ 1jxB; xAÞ\0:5; and the imagined animal C only if PðR ¼ 1jxB; xCÞ[ 0:5 and

PðR ¼ 1jxC; xBÞ\0:5: If either animal A or animal C is rejected, a new animal B is sam-

pled and A and C are generated again using the procedure just described.

Finally, if xA and xC have been accepted as satisfying the premises, the model calcu-

lates both PðR ¼ 1jxA; xCÞ, denoting the probability that A is larger than C, and

PðR ¼ 1jxC; xAÞ; denoting the probability that C is larger than A. The model concludes

that the relation holds for the pair <A, C> if PðR ¼ 1jxA; xCÞ[ 0:5 and

PðR ¼ 1jxC; xAÞ\0:5; implying that transitivity holds for the imagined A-B-C triad.

3.2. Evaluation of BART-g on transitive inference

We conducted tests of transitive inference with BART-g using the relational represen-

tations that BART learned based on 100 randomly chosen training pairs that instantiate a

comparative relation, such as larger or slower. The training regime was essentially identi-

cal to that used by Lu et al. (2012), starting with an initial phase of learning simple attri-

butes (e.g., large and small) that provided empirical priors for learning the corresponding

two-place relations. If the larger relation that BART has learned is indeed transitive, then

any instantiation of animal pairs for which “A is larger than B” and “B is larger than C”
are both true will satisfy the conclusion, “A is larger than C.” Thus, BART-g repeatedly

imagines A-B-C triads that satisfy the premises and then draws the conclusion, in essence

searching for a counterexample. If no counterexample is ever found, the transitive infer-

ence is accepted.

For comparison, we also tested a baseline model that substituted an uninformative prior

for the empirical prior that guides BART’s relation learning (for a full description, see

Lu et al., 2012), but which is otherwise identical to BART-g. The learning process in the

baseline model is essentially the same as standard logistic regression, and the model

makes generative inferences using the same mechanism (with the same parameters) as

does BART-g. For each of the eight comparative relations, the two relation-learning mod-

els were each run 10 times, each time with a different set of training pairs, resulting in a

different learned weight distribution. For each of these learned weight distributions repre-

senting a comparative relation, we let the model generate 100 A-B-C triads satisfying the

premises, testing the relevant relationship between A and C for each triad. To assess the

influence of the free parameter in model predictions, the tests were conducted multiple

times with different values of r2 ranging from 1 to 1,000 for the Leuven inputs and from

100 to 100,000 for the topic inputs.2 The strongest tests are those in which r2 is set at

low values, creating a strong prior preference that A, B, and C are similar to one another.

When the similarity constraint is strong, the model is biased to generate animals that are

similar to the cued animal, and hence more likely to yield a counterexample.

3.2.1. Results for Leuven inputs
Fig. 5 shows the mean proportion correct (i.e., the mean proportion of triads that

satisfy the constraints based on transitive inference) for BART-g and the baseline model

as a function of r2 (ranging from 1 to 1,000 for Leuven inputs). These results were

1074 D. Chen, H. Lu, K. J. Holyoak / Cognitive Science 41 (2017)



averaged over all 80 learned relational distributions. The critical result is that BART-g’s

accuracy remained constant at 100% as r2 was reduced to the effective minimal value of

1. When the value of r2 was reduced below 1 for the Leuven inputs, the models pro-

duced many instantiations that failed to satisfy the required premises (i.e., A > B, B > C,
and not vice versa), due to the very strong bias involved in generating highly similar

objects. (Such failed instantiations of the premises were discarded and hence did not

influence the results shown in Fig. 5.)

Thus, BART-g demonstrates what may be considered an inductive approximation to

deduction for a wide range of parameter values for the prior: Despite exhaustive search

for a counterexample to the transitive inference, no counterexample was ever found. In

contrast, the baseline model often failed to satisfy the transitive premises to conclude that

A > C (and not vice versa) even when the value of r2 was as large as 100.

3.2.2. Results for topic inputs
Fig. 6 shows the models’ performance on transitive inference for topic inputs as a func-

tion of r2. BART-g remained at 100% accuracy for a range of values of r2. In stark con-

trast, the baseline model often found only a small fraction of the desired 100 A-B-C triads

that satisfied the premises. For values of r2 from 100 to 100,000, the baseline model,

respectively, found on average 1.54, 22.7, 67.71, and 73.43 triads that satisfied the premises

after generating 10,000 triads in total. The curve for the baseline model in Fig. 6 shows the

mean proportion correct for whatever number of triads satisfied the premises, whereas the

curve for BART-g plots the first 100 triads that BART-g found satisfying the premises.

Hence, for topic inputs, although the baseline model finds many counterexamples to the

transitive inference, BART-g demonstrates that the comparative relations it has learned are

indeed transitive and asymmetric. This result demonstrates the necessity of learning ade-

quate relational representations in order to achieve successful generative inference.
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Fig. 5. Mean proportion correct on the transitive inference task for BART-g and the baseline model using

Leuven vectors, as a function of the variance parameter. These results are averaged over 80 learned relational

weight distributions.
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4. Animal generation task

A second evaluation of the BART-g model involves answering generative questions

such as “What is an animal that is smaller than a dog?” Although one might suppose that

such questions could be answered by undirected trial and error, we shall see that people’s

answers are often systematically guided by their representations of the relation and of the

animal provided as a cue. We conducted an experiment to characterize the pattern of

human responses in an animal generation task, using Amazon Mechanical Turk. In this

free-generation study, participants typed responses to queries of the form, “Name an

animal that is larger than a dog.” They were instructed to enter the first animal that came

to mind. Four comparative relations (larger, smaller, faster, and slower) and nine cue

animals (shark, ostrich, sheep, dog, fox, turkey, duck, dove, and sparrow) were used. At

least 50 responses were collected for each of the 36 relation-animal pairs. To minimize

learning across trials, we asked each participant to respond to only two queries about

a single animal: either larger and then slower, slower and then larger, faster and then

smaller, or smaller and then faster.
Participants were instructed to complete the study only if they were fluent in English.

There were 1,147 participants, resulting in a total of 2,294 responses across the 36

queries. We processed the responses by removing articles such as “an,” correcting obvi-

ous misspellings (e.g., “pidgeon”), and expanding abbreviations (e.g., “hippo”). We

removed two of the responses (“dig” and “bow”) because it was not clear what animals

they were supposed to be.

The same 36 relation-animal cue pairs were presented to BART-g after it had been

trained on the relevant relations using either Leuven or topic vectors. For each input rep-

resentation (Leuven or topic), we used a set of animals having feature vectors in that rep-

resentation to construct possible responses to the 36 queries. For the Leuven inputs, we
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Fig. 6. Mean proportion correct on the transitive inference task for BART-g and the baseline model using

topic vectors, as a function of the variance parameter. These results are averaged over 80 learned relational

weight distributions.
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used the 129 animals included in the Leuven dataset. For the topic inputs, we used the

set of 168 animals that participants provided as a response at least twice in the entire

MTurk study. For each query, BART-g produced a posterior following a multivariate nor-

mal distribution for the feature vector of the missing animal using Eq. (4). This distribu-

tion was used to derive model predictions of the animal names that could serve as

responses to each query in the following way. For each specific animal, we calculated the

probability density of its feature vector under the posterior distribution for the feature

vector of the missing animal, P xAjxB;R ¼ 1ð Þ: The probability densities calculated for all

129 (for the Leuven inputs) or 168 (for the topic inputs) animals were normalized to pro-

duce a discrete probability distribution. These discrete probabilities were then averaged

across the 10 runs of the BART relation-learning model. Note that for both the Leuven

and topic inputs, the set of animals for which we obtained model predictions included

many animals outside the original training set given to the relation-learning model. In

other words, the set of animals involved in the generation task included many new ani-

mals that had not been encountered by the BART model in the course of acquiring its

relational representations.

4.1. Human results for the animal generation task

Table 2 shows examples of human responses, and the complete set of human responses

is provided in the Table S1. The human responses appear to be mainly driven by two

trends: (a) reporting an animal that is similar to the cue animal and that fits the cue rela-

tion (e.g., cat for “smaller than a dog”); and (b) reporting a “landmark” animal at an

extreme of the continuum (e.g., turtle for “slower than a dog”). The landmark animal

coupled with the cue animal provides an “ideal” example of the cue relation (i.e., one

that maximizes the probability that the relation holds).

Interestingly, these two basic factors—feature similarity and proximity to an ideal—
have both been shown to be important in various types of categorization tasks. In general,

object categories are based on feature similarity (e.g., Davis, Xue, Love, Preston, &

Poldrack, 2014; Rosch & Mervis, 1975), whereas more abstract or relational categories

are often based on ideals (e.g., Barsalou, 1983; Goldstone, Steyvers, & Rogosky, 2003;

Hampton, 1981). An animal generation question (e.g., “What is an animal larger than a

dog?”) is cued by a partially instantiated relation, in essence transforming a two-place

relation, larger(x, y), into a one-place predicate defining an ad hoc object category,

larger-than-dog(x). Accordingly, both the relational ideal and object-oriented feature sim-

ilarity provide potential constraints to guide generation of answers to such relational

queries. The relational ideal has the advantage of guaranteeing generation of a true rela-

tional statement. Although feature similarity provides a suboptimal basis for performing

the relation generation task, it is highly relevant to many other semantic decisions about

category members.

This tradeoff between reporting animals that are similar to the cue animal and report-

ing animals that are landmarks for the cue relation (and usually more dissimilar to the
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cue animal) is captured by the single free parameter in the generative module, r2. As

explained earlier (see Fig. 3), a low r2 results in a response distribution that favors

animals similar to the cue animal, whereas a high r2 leads to a preference for response

animals that are more likely to satisfy the cue relation with respect to the cue animal

(i.e., landmark animals for the cue relation).

Another pattern we observed in the human responses is that the responses to each

query were often dominated by the most frequent response to that query. The average

proportion of the most frequent response to each query relative to the total number of

responses, across all 36 queries, was about 0.4. A typical pattern of human responses is

displayed in Fig. 7, which shows the response frequencies and proportions (out of 53

total responses) to the query, “Name an animal that is slower than a dog.” The most dom-

inant response of turtle is followed by a long tail of low-frequency responses. It is diffi-

cult to explain exactly why some participants chose these low-frequency responses,

especially baby seal, seahorse, or even pig (which was given as an answer by three dif-

ferent participants and tied with cat for third place). Fig. 8 shows the pattern of human

responses to the query, “Name an animal that is smaller than a dog.” Although the pro-

portion of the most frequent response (cat) was lower for this query, the distribution once

again contains a long tail of low-frequency responses. Therefore, we focused on the most

frequent human response to each query when assessing model predictions, although we

also report correlations between the model predictions and the entire “noisy” pattern of

human responses.

Table 2

Examples of human responses in the animal generation task

Cue Relation Cue Animal na Response Proportions

larger Dog 53 Elephant Horse Cow Bear Lion Other

0.26 0.19 0.11 0.08 0.06 0.30

Sparrow 58 Dog Elephant Eagle Hawk Bear Other

0.19 0.16 0.10 0.07 0.05 0.43

smaller Dog 65 Cat Mouse Rat Rabbit Bird Other

0.31 0.22 0.17 0.06 0.05 0.19

Sparrow 58 Mouse Hummingbird Ant Worm Goldfish Other

0.26 0.19 0.09 0.09 0.03 0.34

faster Dog 65 Cheetah Horse Tiger Cat Leopard Other

0.69 0.08 0.05 0.03 0.03 0.12

Sparrow 58 Cheetah Eagle Hawk Bee Lion Other

0.53 0.14 0.07 0.03 0.03 0.26

slower Dog 53 Turtle Snail Cat Pig Elephant Other

0.49 0.08 0.06 0.06 0.04 0.27

Sparrow 58 Turtle Sloth Snail Dog Ostrich Other

0.29 0.21 0.14 0.03 0.03 0.30

Note. The five most frequent responses are shown for each query. The total proportion of the other

responses to each query is shown in the “other” column.
aThe total number of responses for each query.
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4.2. BART-g results for the animal generation task

We evaluated BART-g with respect to its predictions of the most frequent human

response as well as the entire pattern of responses to each query. Specifically, we obtained

three measures of model performance for each query: (a) the correlation (Pearson’s r)
between BART-g’s predicted probabilities for the entire set of 129 (for the Leuven inputs)

or 168 (for the topic inputs) animals and the proportion of participants who named each

of these animals as a response; (b) whether BART-g actually gave the highest probability

to the most frequent human response; and (c) the rank that BART-g gave to the most fre-

quent human response among the entire set of animals for which we obtained model pre-

dictions. That is, we ranked the set of 129 or 168 animals in descending order of their

predicted probabilities and examined the rank for the most frequent human response. A

lower predicted rank indicates better model performance. To summarize model perfor-

mance on all 36 queries, we calculated (a) the average correlation between predicted

probabilities and observed response proportions; (b) the number of queries for which

BART-g gave the highest probability to the top human response (the number of exactly

correct predictions); and (c) the median of the ranks that BART-g assigned to the top

human response across all queries. We chose the median so that a few outliers would not

unduly affect the results (the results were very similar using means).

Participants in the animal generation task seemed to favor “landmark” responses for

some of the four tested relations (especially faster and slower, and larger to a lesser

extent), whereas they seemed to prefer responses based on similarity to the cue animal

for other relations. Accordingly, BART-g’s variance parameter was chosen separately

for each relation in order to mimic the varied response strategies (landmark or similar-

ity) that participants tended to use for different relations. For each of the four relations,

we chose the variance parameter so as to maximize the number of queries for which
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Fig. 7. A typical pattern of human responses in the animal generation task, showing response proportions

and frequencies (shown above the bars) for the query, “Name an animal that is slower than a dog.” Partici-

pants favored the “landmark” response to this query.
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the model correctly predicted the top human response. When the number of correct pre-

dictions was the same for different values of the variance parameter, we broke the tie

by choosing the variance that produced a lower median rank. After fitting the variance

parameter for a relation, the same value was used for all cue animals for that relation.

We compared the BART-g model with two alternative, simpler models. The first alter-

native model simply used the prior term in Eq. (3), P xAjxBð Þ; and thus considered only

the similarity of each possible response to the cue animal. The second alternative model

made a decision based on the likelihood term, P R ¼ 1jxA; xBð Þ; for each of the animals,

and thus cared only about the probability that a possible response satisfies the cue relation

with respect to the cue animal.

4.2.1. Results for Leuven inputs
BART-g’s variance parameter was chosen from the values 1, 5, 10, 50, and 100. The

best-performing variances were 50, 10, 10, and 100, respectively, for larger, smaller, fas-
ter, and slower. For larger, smaller, and slower, the chosen variances reflect the general

patterns of “landmark” versus “similarity” responses for these relations. The relatively

small value of 10 for faster is due to the fact that the Leuven dataset does not include

cheetah, the landmark animal for the faster relation and the most popular human response

to all of the faster queries. Accordingly, for the purpose of evaluating the models, given

the Leuven inputs, the second most frequent human response was considered to be the

dominant response. For many of the queries, the second most frequent human response

was more similar to the cue animal, resulting in a smaller chosen variance.

4.2.1.1. Number of correct predictions: BART-g correctly predicted the top human

response for 13 of the 36 queries (with the caveat noted above concerning the absence of

cheetah in the Leuven set), which is impressive considering that there were 129 animals
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Fig. 8. The pattern of human responses for the query, “Name an animal that is smaller than a dog.” Partici-

pants favored responses based on similarity to the cue animal for this query.
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from which to choose for each query. In fact, the probability of correctly predicting the

top response for at least 13 of the 36 queries by choosing uniformly at random from the

129 animals is only 7.14 9 10�19.

We can further evaluate BART-g’s performance by comparing its behavior to that of a

typical participant in our study. Although each participant answered only two of the 36

possible queries, we can estimate the total number of queries for which we would expect

the average participant to provide the most frequent response. As mentioned previously,

the average proportion of the most frequent response to each query across all 36 queries

was about 0.4. Therefore, we would expect a typical participant to provide the top response

for 36� 0:4 ¼ 14:4 queries. In comparison, BART-g generated the top response for 13 of

the 36 queries. The model thus agreed with the dominant response of the entire set of

human participants about as often as would be expected for a typical individual participant.

In contrast, the alternative model that uses only the prior term (the “prior” model)

correctly predicted the top response for only one of the 36 queries (“smaller than a

dog,” to which the top response was cat), and the likelihood model made only four cor-

rect predictions (for one faster query and three slower queries). The probabilities of get-

ting at least one correct and at least four correct by random chance are about 0.24 and

1.74 9 10�4, respectively.

BART-g correctly predicted the top response for two larger queries, one smaller query,
one faster query, and all nine slower queries. Note that predicting turtle as the top human

response to all nine slower queries required an impressive feat of generalization on the

model’s part, because turtle was not in the original training set given to the BART rela-

tion-learning model.

4.2.1.2. Median ranks: Across all 36 queries, the median of the ranks that BART-g

assigned to the top human responses was 8.5. In comparison, the median rank was 71.5

for the prior model and 11.5 for the likelihood model. Fig. 9 shows the breakdown of

these results for the four comparative relations, with the median ranks displayed above

the bars. For easier comparison with the topic inputs, in which the models considered a

different total number of animals, the y-axis shows the median rank as a fraction of the

total number of animals considered (129 in this case). Note that a lower median rank

fraction indicates a better fit between model predictions and human responses. As shown

in Fig. 9, the prior model performed poorly for all four relations, and the likelihood

model tended to perform slightly worse than the BART-g model.

4.2.1.3. Correlations: Our analyses focused on the dominant human responses, which

were relatively stable. However, we also applied the models to the complete set of human

responses. Across all 36 queries, the average correlation (Pearson’s r) between predicted

probabilities and observed response proportions for the entire set of 129 Leuven animals

was 0.31 for BART-g, 0.04 for the prior model, and 0.19 for the likelihood model. The

response frequencies for human responses following the dominant response were very

low (see Figs. 7 and 8), so it is not surprising that correlations for the entire set of human

responses were low for all models. However, BART-g outperformed the alternative
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models not only across all 36 queries but also for each of the four relations, as shown in

Fig. 10. Note that the variance parameter was not specifically chosen to maximize this

correlation measure, but rather to maximize the number of queries for which the model

correctly predicted the top human response. The pattern of results for the complete item

set is similar to that obtained using the median ranks of the top human responses. Over-

all, these results indicate that the BART-g model, which considers both feature similarity

to the cue animal and the likelihood of satisfying the cue relation with respect to the cue

animal, predicts the pattern of human responses more accurately than models that con-

sider only one of these factors.

4.2.2. Results for topic inputs
BART-g’s performance using topic inputs was compared with two alternative models.

One of these was the likelihood model that we tested for the Leuven inputs. The second

alternative model, analogous to the prior model in the previous section, calculated a prob-

abilistic quantity that represents word association strength in the topic model (Griffiths

et al., 2007, p. 221):

Pðw2jw1Þ ¼
X
z

Pðw2jzÞPðzjw1Þ: ð8Þ

For a given cue animal word, w1, we calculated P(w2|w1) for each of the 168 possible

response animal words (w2) using all 300 topic dimensions (z) obtained from the topic
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model. This method yielded a predicted probability for each possible response animal

corresponding to the semantic association strength from the cue animal word to the

response animal word, which can be (but is not always) based on feature similarity

between the two animals.

For the topic inputs, the variance parameter for the generative model was chosen from

the values 100, 500, 1,000, 5,000, and 10,000. The best-fitting variances selected were

10,000, 1,000, 10,000, and 500, respectively, for larger, smaller, faster, and slower.
These variance values are reasonable for larger, smaller, and faster given their respective

response patterns. As we will see, BART-g performed the worst on the slower queries,

though still better than both of the alternative models.

4.2.2.1. Number of correct predictions: BART-g correctly predicted the top human

response for 15 of the 36 queries using the topic inputs. The probability of making at

least 15 correct predictions by random chance when there are 168 animals from which to

choose for each query is about 2.07 9 10�24. In contrast, both the likelihood model and

the model based on word association correctly predicted the top human response for only

one of the 36 queries (one faster query and one smaller query, respectively), for which

the corresponding chance probability is about 0.19. BART-g correctly predicted the top

response for two larger queries, three smaller queries, all nine faster queries, and one

slower query. Of particular note, predicting that cheetah would be the top human

response to all nine faster queries required the model to generalize beyond the set of ani-

mals it encountered when learning the comparative relations (as cheetah was never used

in the training pairs).
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Fig. 10. Correlations (Pearson’s r) between the models’ predicted probabilities and observed response

proportions for all 129 animals using Leuven inputs, broken down by relation.
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4.2.2.2. Median ranks: The median predicted rank for the top human response across all

36 queries was 7 for the BART-g model, 24 for the model based on word association,

and 29 for the likelihood model. Fig. 11 shows the breakdown of these results for the

four relations. BART-g outperformed the two alternative models for all four relations.

4.2.2.3. Correlations: Across all 36 queries, the average correlation (Pearson’s r)
between predicted probabilities and observed response proportions for the entire set of

168 animals was 0.34 for BART-g, 0.12 for word association, and 0.17 for the likelihood

model. As shown in Fig. 12, BART-g outperformed both alternative models on smaller
and faster, and the word association model on slower. Overall, these results indicate that

BART-g accounts for the human data more successfully than either simple word associa-

tion or consideration of the relation alone. Table 3 summarizes all the model results on

the animal generation task for both Leuven and topic inputs.

5. General discussion

5.1. Generative inferences from a bottom-up model of relation learning

The present findings provide evidence that a bottom-up model of relation learning,

designed to make discriminations between positive and negative examples of relations (Lu

et al., 2012), can be extended to yield generative inferences. These inferences can involve
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Fig. 11. Median ranks for the top human responses assigned by the different models using topic inputs, bro-

ken down by relation. The y-axis shows the median rank as a fraction of the total number of animals consid-

ered by the models. The actual median ranks (out of 168 animals) are shown above the bars. Note that lower

values indicate better performance.
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relations between either hypothetical (in the case of transitive inference) or actual (in the

case of animal generation) objects. The BART-g model thus constitutes an existing proof:

It is possible to learn relations from non-relational (and independently generated) inputs in

a bottom-up manner and to use the resulting relational representations not only to evaluate

whether a stated relation does or does not hold, but also to generate novel instantiations of

the relation. This is an important demonstration, as the capacity to make generative infer-

ences using relations provides a key prerequisite for abstract relational thought.

The model’s ability to make transitive inferences based on relations it has learned from

examples in a bottom-up fashion illustrates the potential power of the discriminative

approach to relation learning. Note that BART-g is not endowed with any notion of what

a “transitive and asymmetric” relation is (though like a 6-year-old child, it is endowed

with sufficient working memory to integrate two relations as premises). Rather, it simply

uses its learned comparative relations to imagine possible object triads, and without

exception concludes that the inference warranted by transitivity holds in each such triad.

The model thus approximates “logical” reasoning by systematically searching for coun-

terexamples (and failing to find any), akin to a basic mechanism postulated by the theory

of mental models (Johnson-Laird, 2008; see also Holyoak & Glass, 1975). The fact that

BART-g achieves error-free performance in the tests of transitive inference is especially

impressive given that its inductively acquired relational representations are most certainly

fallible (e.g., the BART model makes errors in judging which of two animals close in

size is the larger; see Lu et al., 2012). It turns out that imperfect representations of com-

parative relations, acquired by bottom-up induction, can be sufficiently robust as to yield

reliable quasi-deductive transitive inferences.
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BART-g’s capacity to make transitive inferences with specific relations, such as larger,
may provide a first step toward acquiring a more general capacity to make such infer-

ences. Many theorists have suggested that children and adults make transitive inferences

by mapping stated premises onto a one-dimensional ordered mental array (e.g., Halford,

1993; Hummel & Holyoak, 2001; Huttenlocher, 1968). Halford (1993) hypothesized that

such a mental array may originate from some basic perceptual ordering (e.g., for objects

varying in size) that is learned at an early age, to which other relations may be mapped.

Although BART-g does not create a mental array, its outputs could be adapted to gener-

ate small sets of items ordered by their magnitudes on a dimension (much like the sim-

pler BARTlet model described by Chen et al., 2014), which could be mapped onto an

array. Importantly, whether or not a novel relation is transitive must always be estab-

lished empirically. For a brief period of time, young children tend to overgeneralize tran-

sitivity to non-transitive relations (e.g., if told that a boy loves a girl and the girl loves a

dog, a child may infer that the boy must love the dog; Kuczaj & Donaldson, 1982). The

implicit test of transitivity embodied in BART-g could be used to assess whether or not

the inferences generated by mapping to an ordered array actually hold for a novel rela-

tion, thereby helping to correct relational overgeneralization.

In the animal generation task, BART-g achieved moderate success in modeling human

response patterns by attempting to maximize both similarity to the cue animal and the

probability that the cue relation is satisfied, performing better than models that consider

just one of these factors alone. Human answers to questions that require relational com-

pletions (e.g., “What is an animal smaller than a dog?”) are neither random, nor solely

guided by word associations, nor solely guided by the likelihood of satisfying the

Table 3

Summary of model results on the animal generation task

Leuven Inputs Topic Inputs

BART-g Prior Likelihood BART-g

Word

Association Likelihood

Number correct Overall 13 1 4 15 1 1

larger 2 0 0 2 0 0

smaller 1 1 0 3 1 0

faster 1 0 1 9 0 1

slower 9 0 3 1 0 0

Median rank

(and fraction)

Overall 8.5 (0.07) 71.5 (0.55) 11.5 (0.09) 7 (0.04) 24 (0.14) 29 (0.17)

larger 8 (0.06) 107 (0.83) 3 (0.02) 7 (0.05) 14 (0.11) 9 (0.07)

smaller 46 (0.36) 58 (0.45) 48 (0.37) 8.5 (0.07) 15.5 (0.12) 36 (0.28)

faster 11 (0.09) 31 (0.24) 19 (0.15) 1 (0.01) 73 (0.57) 8 (0.06)

slower 1 (0.01) 91 (0.71) 3 (0.02) 25 (0.19) 40 (0.31) 45 (0.35)

Correlation

(Pearson’s r)
Overall 0.31 0.04 0.19 0.34 0.12 0.17

larger 0.33 �0.06 0.28 0.14 0.21 0.23

smaller 0.16 0.11 0.12 0.27 0.18 0.17

faster 0.28 0.12 0.25 0.86 0.05 0.18

slower 0.46 �0.01 0.12 0.09 0.04 0.10
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relation. Rather, people (and BART-g) appear to integrate similarity information (cf.

Ward, 1994) with likelihoods of relations to generate constrained and systematic answers

to what might appear to be open-ended questions.

Although addressed to very different tasks, there are interesting connections between

BART-g and the PFC/BG working memory model (PBWM) developed by Kriete, Noelle,

Cohen, and O’Reilly (2013). Both models are based on statistical learning and demonstrate

that statistical learning can achieve reasonable performance for certain types of relations

and some relatively simple forms of generative tasks. However, both modeling projects

acknowledge that this type of computational mechanism only provides a first step in learn-

ing to bootstrap acquisition of relation representations for more complex relations and a

broader range of generative inferences. The architecture of PBWM exemplifies a possible

direction for the future development of BART, with the aim of providing the capability to

discover role components that enable the formation of a hierarchical structure to connect

object features and relational representations. For generative tasks, BART-g is limited by

its lack of an explicit role representation, which would be a critical addition in order to

move from comparative relations to other semantic relations. Nonetheless, BART-g benefits

from the semantic richness of inputs derived from the topic model. Unlike the PBWM

model, BART-g does not need to be trained with all possible words used in the test phase.

5.2. Limitations and future directions

BART-g is able to generate completions that form true comparative relations (e.g.,

generating dog as an animal larger than cat), and it can make one-shot transitive infer-

ences about hypothetical instances. An apparent limitation, however, is that the model

would not be able to make transitive inferences that are counterfactual in nature. For

example, suppose that after learning animal sizes in the usual way, the model were asked

to assume cat is larger than dog and mouse is larger than cat as premises. These pre-

mises are clearly false, and the model would have no way to treat them as true; hence, it

would be unable to satisfy the prerequisite for assessing the transitive inference mouse is
larger than dog. Rather, the model would simply determine that the putative conclusion

(like the stated premises) is false. To the best of our knowledge, human performance with

such counterfactual inferences based on comparatives has never been examined experi-

mentally. However, work on syllogistic reasoning has shown that adults have some ability

to reason with counterfactual premises, although they have difficulty overcoming belief

biases (e.g., deciding that a conclusion known to be false nonetheless constitutes a valid

inference; Evans, Barston, & Pollard, 1983). In general, people have difficulty making

deductive inferences when they are unable to form an integrated mental model of the pre-

mises (Oakhill, Johnson-Laird, & Garnham, 1989); BART-g is entirely stymied in such

cases. Perhaps the model could be augmented with inhibitory mechanisms that could sup-

press prior knowledge when it is necessary to reason counterfactually.

Although the extension of bottom-up relation learning to enable basic generative infer-

ence is an important theoretical advance, the more general project of modeling human infer-

ence abilities based on relational learning is still in its infancy. An obvious limitation of
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BART-g is that it has only been tested in the very limited domains of comparative relations

defined over a set of animals. As a step toward overcoming this limitation to comparatives,

Eq. (5) could be extended in two ways. First, we could introduce a nonlinear kernel, K(xA,
xB), to map feature values to a higher dimensional space before applying the logistic func-

tion in this derived space. This method has been widely used in machine learning applica-

tions to capture nonlinear patterns in the data. Second, the logistic function in the

equation could be replaced by a more sophisticated generative model to bind the features in

the two related objects (cf. Jern & Kemp, 2013; Tenenbaum et al., 2011).

More generally, an important direction for future research is to extend models of learning

and inference to a broader class of relations (e.g., Roy, Kemp, Mansinghka, & Tenenbaum,

2007). Comparative relations between generic types of entities can be defined by informa-

tion that is intrinsic to the objects being compared. A number of important abstract relations

have this property (e.g., superordinate, antonym, synonym). However, most relational predi-

cates involve additional information extrinsic to the objects being related (e.g., spatial rela-

tions, action verbs, causatives). In particular, a great deal of modeling work has investigated

learning and inference with causal relations (e.g., Lu, Yuille, Liljeholm, Cheng, & Holyoak,

2008; Lu, Rojas, Beckers, & Yuille, 2015; for a review, see Holyoak & Cheng, 2011), and

some progress has been made in integrating causal learning with analogical inference

(Holyoak & Lee, in press; Holyoak, Lee, & Lu, 2010). However, it remains unclear how

models of causal learning relate to models of relation learning in general. More generally, it

is essential to develop models of relation learning that operate on richer input representa-

tions, rather than solely using feature vectors for individual objects.

Although the BART model takes a discriminative (bottom-up) approach to relation

learning, it may be possible to integrate discriminative models with more top-down gener-

ative models. As Jern and Kemp (2013) have argued, discriminative and generative models

each seem especially suitable for particular types of tasks and stimuli. Jern and Kemp

pointed out that any discriminative model can be augmented by an algorithm for generat-

ing instances, but that the most obvious such algorithm (based on random sampling from

the full feature space) is prohibitively inefficient. The algorithm for instance generation

incorporated into BART-g does not involve such random sampling. Rather, it is based on

distributional assumptions about the features of types of objects, in which respect it is sim-

ilar in spirit to the sampling approach incorporated into a generative model by Jern and

Kemp (in which samples of exemplars are drawn from category distributions). However,

rather than implementing a sampling algorithm, the BART-g algorithm is implemented

using a variational method, allowing direct computation of generative inferences. BART-g

thus illustrates how a discriminative model of relation learning can potentially merge with

the generative approach to relational inference. More generally, relational knowledge ini-

tially acquired by a discriminative model can potentially provide a pool of relational sche-

mas, which can in turn be used in a top-down fashion to guide further learning.

In order to account for human-level analogical reasoning, a model must be able to

make generative inferences based on the integration of multiple relations (Halford, Wil-

son, Andrews, & Phillips, 2014; Halford et al., 1998; Waltz et al., 1999). Many current

analogy models (for a review, see Gentner & Forbus, 2011) are able to reason with
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complex systems of relations, and hence can account for basic phenomena of human ana-

logical reasoning that remain beyond the reach of BART-g. However, none of these mod-

els have been tested on their ability to reason with relations that were acquired from

independently generated, non-relational inputs. We believe it is important to establish that

a computational path exists from non-relational inputs of realistic complexity to the

acquisition of explicit relations, and beyond that, to the adult human capacity to reason

generatively on the basis of complex relational representations.

Acknowledgments

We thank Airom Bleicher for helping us to conduct the animal generation study on Amazon

Mechanical Turk, Charles Kemp for sharing Leuven inputs, Mark Steyvers for making the

topic model code available, and Peter Gordon for providing us with a pre-processed version of

the Wikipedia corpus. Preparation of the paper was supported by grant BCS-135331 from the

National Science Foundation and grant N000140810186 from the Office of Naval Research.

Notes

1. Throughout this paper, we use the term “generative” to refer to inferences that

require partial construction of a proposition (e.g., supplying an answer to a question

such as, “What is an animal larger than a dog?”). In this usage, generative infer-

ences contrast with discriminative judgments that involve evaluation of a fully sta-

ted proposition (e.g., “Is a bear larger than a dog?”). In the cognitive science

literature, the terms “generative” and “generativity” are often used in a broader

sense (e.g., in connection with the apparent systematicity of language and thought).

We do not claim that “generative” inferences of the sort on which we focus here

necessarily exhibit generativity in the broader sense.

2. We used different ranges of r2 for the Leuven and topic inputs because they are

scaled differently. Across the animals in the ratings dataset, the mean variance

among the 50 Leuven features is 0.79, whereas the mean variance among the 52

topics features is 147.24.
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